电路-品质因数

品质因数

物理意义

电感线圈、电容器品质因数:用于评价实际电感线圈、电容器的品质。实际电感、电容除储存能量外,都存在一定能量消耗。元件品质因数定义:

Q

=

d

e

f

2

π

Q \overset{\underset{\mathrm{def}}{}}{=} 2\pi\frac{储能的最大值}{一周期内的耗能}

Q=def​2π一周期内的耗能储能的最大值​品质因数用来衡量元件质量的好坏,将品质因数扩展到谐振电路,表示谐振电路储能与耗能的比值。

电感线圈的品质因数

线圈电流:

i

=

2

I

c

o

s

ω

t

i = \sqrt{2}Icos\omega t

i=2

​Icosωt电感储能:

w

L

(

t

)

=

1

2

L

i

2

=

L

I

2

c

o

s

2

ω

t

w_{L}(t)=\frac{1}{2}Li^{2}=LI^{2}cos^{2}\omega t

wL​(t)=21​Li2=LI2cos2ωt最大储能为:

L

I

2

LI^{2}

LI2一周期内线圈内阻r的耗能:

I

2

r

T

I^{2}rT

I2rT电感品质因数:

Q

L

=

2

π

L

I

2

I

2

r

T

=

2

π

f

L

r

=

ω

L

r

Q_{L}=2\pi\frac{LI^{2}}{I^{2}rT}=\frac{2\pi fL}{r} =\frac{\omega L}{r}

QL​=2πI2rTLI2​=r2πfL​=rωL​

电容的品质因数

电容电压:

u

=

2

U

c

o

s

ω

t

u=\sqrt{2}Ucos\omega t

u=2

​Ucosωt电容储能:

w

C

(

t

)

=

1

2

C

u

2

=

C

U

2

c

o

s

2

ω

t

w_{C}(t)=\frac{1}{2}Cu^{2}=CU^{2}cos^{2}\omega t

wC​(t)=21​Cu2=CU2cos2ωt最大储能:

C

U

2

CU^{2}

CU2一周期电阻R耗能:

U

2

R

T

\frac{U^{2}}{R}T

RU2​T电容品质因数:

Q

C

=

2

π

C

U

2

U

2

G

T

=

2

π

f

C

G

=

ω

C

G

=

ω

C

R

Q_{C}=2\pi\frac{CU^{2}}{U^{2}GT}=\frac{2\pi fC}{G} =\frac{\omega C}{G}=\omega CR

QC​=2πU2GTCU2​=G2πfC​=GωC​=ωCR

rLC串联谐振电路中的品质因数

电路谐振时,回路电流:

i

=

2

c

o

s

ω

0

t

i=\sqrt{2}cos\omega _{0}t

i=2

​cosω0​t电容电压相量:

U

C

0

˙

=

j

1

ω

0

C

I

0

˙

=

I

0

ω

0

C

9

0

o

\dot{U_{C0}}=-j\frac{1}{\omega _{0}C}\dot{I_{0}}=\frac{I_{0}}{\omega _{0}C}\angle 90^{o}

UC0​˙​=−jω0​C1​I0​˙​=ω0​CI0​​∠90o电容电压瞬间式:

u

c

0

=

2

I

0

ω

0

C

c

o

s

(

ω

0

t

9

0

o

)

=

2

I

0

ω

0

C

s

i

n

(

ω

0

t

)

u_{c0}=\sqrt{2}\frac{I_{0}}{\omega _{0}C}cos(\omega _{0}t-90^{o})=\sqrt{2}\frac{I_{0}}{\omega _{0}C}sin(\omega _{0}t)

uc0​=2

​ω0​CI0​​cos(ω0​t−90o)=2

​ω0​CI0​​sin(ω0​t)电感储能:

w

L

0

(

t

)

=

1

2

L

i

L

0

2

=

L

I

0

2

c

o

s

2

ω

0

t

w_{L0}(t)=\frac{1}{2}Li_{L0}^{2}=LI_{0}^{2}cos^{2}\omega_{0}t

wL0​(t)=21​LiL02​=LI02​cos2ω0​t电容储能:

w

C

0

(

t

)

=

1

2

C

u

C

0

2

=

C

(

I

0

w

0

C

)

2

s

i

n

2

ω

0

t

w_{C0}(t)=\frac{1}{2}Cu_{C0}^{2}=C(\frac{I_{0}}{w_{0}C})^{2}sin^{2}\omega_{0} t

wC0​(t)=21​CuC02​=C(w0​CI0​​)2sin2ω0​t条件:谐振电路中

ω

0

L

=

1

ω

0

C

\omega_{0}L=\frac{1}{\omega_{0}C}

ω0​L=ω0​C1​可得电容储能等于电感储能:

w

C

0

(

t

)

=

C

(

I

0

w

0

C

)

2

s

i

n

2

ω

0

t

=

L

I

2

s

i

n

2

ω

0

t

w_{C0}(t)=C(\frac{I_{0}}{w_{0}C})^{2}sin^{2}\omega_{0} t=LI^{2}sin^{2}\omega_{0} t

wC0​(t)=C(w0​CI0​​)2sin2ω0​t=LI2sin2ω0​t谐振电路的总储能为电感储能与电容储能之和:

w

0

(

t

)

=

w

L

0

(

t

)

+

w

C

0

(

t

)

=

L

I

0

2

=

C

U

0

2

,

(

)

w_{0}(t)=w_{L0}(t) +w_{C0}(t)=LI^{2}_{0}=CU^{2}_{0},(常数)

w0​(t)=wL0​(t)+wC0​(t)=LI02​=CU02​,(常数)当电感储能最大时电容储能为零,反之亦然。谐振电路谐振时的品质因数:

Q

=

2

π

L

I

0

2

I

0

2

r

T

0

=

w

0

L

r

=

1

w

0

C

r

Q=2\pi\frac{LI^{2}_{0}}{I^{2}_{0}rT_{0}}=\frac{w_{0}L}{r}=\frac{1}{w_{0}Cr}

Q=2πI02​rT0​LI02​​=rw0​L​=w0​Cr1​谐振电路品质因数反映电路选频特性,品质因数越高,选频特性越好。

小结

品质因数反映器件和电路的特性。元件串联时,谐振电路品质因数和电阻成反比,电阻越大,品质因数越低。品质因数是衡量谐振电路优势的一个重要参数。